Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Miniaturization and high heat flux of power electronic devices have posed a colossal challenge for adequate thermal management. Conventional air-cooling solutions are inadequate for high-performance electronics. Liquid cooling is an alternative solution thanks to the higher specific heat and latent heat associated with the coolants. Liquid-cooled cold plates are typically manufactured by different approaches such as: skived, forged, extrusion, electrical discharge machining. When researchers are facing challenges at creating complex geometries in small spaces, 3D-printing can be a solution. In this paper, a 3D-printed cold plate was designed and characterized with water coolant. The printed metal fin structures were strong enough to undergo pressure from the fluid flow even at high flow rates and small fin structures. A copper block with top surface area of 1 inch by 1 inch was used to mimic a computer chip. Experimental data has good match with a simulation model which was built using commercial software 6SigmaET. Effects of geometry parameters and operating parameters were investigated. Fin diameter was varied from 0.3 mm to 0.5 mm and fin height was maintained at 2 mm. A special manifold was designed to maximize the surface contact area between coolant and metal surface and therefore minimize thermal resistance. The flow rate was varied from 0.75 L/min to 2 L/min and coolant inlet temperature was varied from 25 to 48 oC. It was observed that for the coolant inlet temperature 25 oC and aluminum cold plate, the junction temperature was kept below 63.2 oC at input power 350 W and pressure drop did not exceed 23 Kpa. Effects of metal materials used in 3D-printing on the thermal performance of the cold plate were also studied in detail.more » « less
-
Cu3Sn, a well-known intermetallic compound with a high melting temperature and thermal stability, has found numerous applications in microelectronics, 3D printing, and catalysis. However, the relationship between the material's thermal conductivity anisotropy and its complex anti-phase boundary superstructure is not well understood. Here, frequency domain thermoreflectance was used to map the thermal conductivity variation across the surface of arc-melted polycrystalline Cu3Sn. Complementary electron backscatter diffraction and transmission electron microscopy revealed the thermal conductivity in the principal a, b, and c orientations to be 57.6, 58.9, and 67.2 W/m-K, respectively. Density functional theory calculations for several Cu3Sn superstructures helped examine thermodynamic stability factors and evaluate the direction-resolved electron transport properties in the relaxation time approximation. The analysis of computed temperature- and composition-dependent free energies suggests metastability of the known long-period Cu3Sn superstructures while the transport calculations indicate a small directional variation in the thermal conductivity. The ∼15% anisotropy measured and computed in this study is well below previously reported experimental values for samples grown by liquid-phase electroepitaxy.more » « less
-
This paper focuses on two-phase flow boiling of dielectric coolant HFE 7000 inside a copper multi-microchannel heat sink for high heat flux chip applications. The heat sink is composed of parallel microchannels, 200 μm wide, 2500 μm high, and 20 mm long, with 200-μm-thick fins separating the channels. The copper heat sink consists of almost 100 channels connected by a longitude groove with a nearly trapezoidal cross section. Coolant impinges down to the base at the groove and then goes along the microchannels. A copper block heater arrangement was used to mimic a computer chip with a footprint of 1”x1” (6.45 cm2). The base heat flux was varied from 7.75 W/cm2 to 96.1 W/cm2 and the mass flux from 547.6 to 958.4 kg/m2s, at a nominal saturation temperature of 54 °C. Heat transfer coefficients as high as 57.5 kW/m2K were reached, keeping the base temperature under 66 °C with a maximum of 21.9 kPa of pressure drop, for inlet subcooling of 5 degree and a coolant flow rate of 958.4 kg/m2. Effects of inner diameter of tubing on thermal performance and pressure drop are also discussed. It was observed that an increase of tubing inner diameter by 60 % can result in increase of heat transfer coefficient by 47.8 % and reduction in pressure drop by 63 %.more » « less
An official website of the United States government

Full Text Available